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Introduction

In the previous chapter, we introduced the principles of guided waves and learned that the
mechanism of waveguiding is one in which the waves bounce obliquely between parallel planes as
they progress along the structure. We studied transverse electric (TE) and transverse magnetic
(TM) waves supported by plane conductors, as well as those supported by a plane dielectric slab.

Thus, we restricted our study of guided waves to one-dimensional structures.

In this chapter, we extend the treatment to two dimensions.
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

Derivation of field expressions for TE modes

By making use of the expansions for the Maxwell’s curl equations in Cartesian coordinates, that all
transverse (x and y) field components are derivable from the longitudinal field component H,

aH.

jB.Ey = —jopH, ,-.yz + jB.H, = ju:E,
= - _ 0 H. _
~jB.E, = —jouH, ~jB.H, — r;‘; = jweE,
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ax ay : ax ay
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

obtain a differential equation for A as given by

a’H, oA, _
Sty (B BH =0

ax

Recall that 8 = ©Vue, so that B2 = o’ue.

we make use of the separation of variables technigue

This consists of assuming that the required function of the two variables x and yis the product of
two functions, one of which is a function of x only and the second is a function of y only.

Hy(x.y.2) = X(x)¥(y)e %=

Substituting (9.7) into (9.6), we then oblain

X'(0)¥(y) + X(0V"(y) - (Bz = BHX ()Y (y) = 0

or
X.w 17.‘1
e —=p-p
Tty A8
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Equation (9.8) says that a function of x only plus a function of yonly is equal to a constant. For
this to be satisfied, both functions must be equal to constants.

X’ 5 Yoo
S — B2, a constant S —By. a constant
d*X - 27
— 5 =-BX — Y _ gy
dx dy? y

We have thus obtained two ordinary differential equations involving separately the two
variables xand y; hence, the technique is known as the separation of variables technique.

The solutions to (9.10a) and (9.10b) are given by
X(I) = A]Bﬂjxr + Ege_fﬁxx
¥(y) = B + Be it
H, = (Aol + e 1) (Brely + Boe 1P¥)e 12
where Ay, Ay, By, and B, are constanis.)
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

We also note from substitution of (9.9a) and (9.9b) into (9.8) that

Bi=PR-PBi-B

To determine the constants in (9.11), we make use of the boundary conditions that require
that the tangential components of the electric-field intensity on all four walls of the guide
be zero.

iH,
p =0 for y=00<x<a
E.=0 for y=00<x<a };
— 1
=0 for y=b0<x<a “Z_0 for y=hO0<x<a
- , ay
y=20 for x=0,0<y<b AF
_ z_ " _ P
E,=0 for x=a0<y<b o — 0 for x=00<y<b
— =0 for x=a,0<y<b
ox
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Using (9.13c) and (Y.13a) in conjunction with (9.11). we get

I
I
S B

A — A =0 or
B -8B =10 or

I
=

H, = Acos B,x cos Byy e it

where A is a constant. Using the remaining two boundary conditions (9.13d)
and (9.13b), we then obtain

mir

sin B.a =0 or ,BX=T, m=0,12,... (9.15a)
. n
sin ,Byb =0 or ,By = T n=01.2,... (9.15b)

Thus, the solution for &, for the TE,,,, mode is given by

mirx nTy .
o8 —— Bz

‘Hz=ﬁc0s
a

E—

—3\2 2
— ()
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

For propagation to occur, the exponent 3, in (9.16) must be real. Hence, the cut-
off condition is given by

wlus — (?) - ("Tf)‘ =0 (9.18)

the cutoff frequency is given by

) G

the cutoff wavelength is

A= 1
‘ \‘Efc
_ 1
V(mf2a) + (n/2b)?
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY

RESONATOR
2l g _(maY _ (nmY
o) - (%)
m\? n\?
--ei{(5) + (5]
e
=%
_ Ao o . nTy . oo M omw o omwx Ty e,
- jﬂ::;; n;Acus ma X in ; PR H, = jzrig 2 A sin cos e Wt
= _.ww’\gmf . mTx RTY s 5o Az L BUNRULCL RS LD Y
E, = 1—47[2 " A sin . s HV_IZW)(’K b Acos sin ¢

It can also be seen that if both 77 and 7 are equal to zero, then all transverse field
components go to zero.

Therefore, for TE modes, either m or n can be zero, but both m and n cannot be zero
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

The entire procedure for the derivation of the field expressions can be repeated for

TM waves by starting with the longitudinal field component Ez.

Therefore, for TM modes both m and n must be nonzero.
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TABLE 9.1 Feld Expressions and Associated Parameters for TE and TM Modes in a Rectangular Waveguide

Transverse electric (TE) waves

Transverse magnetic (TM) waves

Field Expressions:
(m.n =0,1,2.... but not both zero)

E.=0

— - ni .
H, = Acos ML cos Tye“‘aiz
E =] A BT 4 cos 7% gin nay etifz
* !471'2 M b
_ . f\g mT — | mwx nTY iz
E, = —j—Fwp—Asin cos et P
47 a
_ E
-2
g
_ E
B =+
Mg
1 / m)z (")z
- 1Z)Y + (2
e mml(a) G
A= 2
/(mla)® + (n/b)’
_ A _ A
VT (WA VI - ()P
_ 1 _ 1
Upz = /T T FE /1 a2
VeV — (FIF) VeeVT — (WA
Vple Vale
Mg =

TV (i V- g

Field Expressions:
(m.n=123...)

H=0
= - niw .
E. = Asin M7 Gin Tye”‘giz
E == 2)\:,\ T 7 cos ZE n 22 pine
ey
_ . AS nwT - . mmwx nwy +iB
E, ﬂmTAsn cos e TiPE
_ E
-5
s
_ E
H=+—
s
1 I m\? (11)2
P i iy
. 2vue N ( a ) b
_ 2
V(mla)® + (nib)?
_ A _ A
fONVT- (W) VI - (7P
1 1

3

o —
" VEsVT = (Y VsV - (WA)
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

Dominant mode

Waveguides are, however, designed so that only one mode, the mode with the
lowest cutoff frequency (or the largest cutoff wavelength), propagates. This is
known as the dominant mode.

From Table 9.1, we can see that the dominant mode is the TE1,0 mode or the
TEO,1 mode, depending on whether the dimension a or the dimension bis the
larger of the two.

By convention, the larger dimension is designated to be g, and hence the mode is
the dominant mode.
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Example 9.2 Application of transmission-line analogy to a rectangular
waveguide system

A rectangular waveguide extending in the z-direction and having the dimensions
a = 4cm and b = 2 cm has a dielectric discontinuity at z = (), as shown in Fig. 9.4. For
TE, waves of frequency f = 5000 MHz incident from section 1, we wish to find (a) the
transmission-line equivalent and (b) the length and the permittivity of a quarter-wave
section required to achieve a match between the two sections.

(a) First, we note that for the TE,p mode, A, = 2a = 8 cm for both sections. For
f = 5000 MHz, the wavelength in free space is Ay = 6 cm and the wavelength in a
dielectric of permittivity 9 is A; = 2 cm. Since Ay and A; are both less than A,. the
TE; y mode propagates in both sections. Denoting the guide parameters associated
with sections 1 and 2 by subscripts 1 and 2, respectively, we then obtain

377
Mgt = — ™ == — = = 570 ()
V1= (AfA) V1= (6/8)
377/3
T2 = —— S TR o
V1= (/) V1= (2/8)

Thus, the transmission-line equivalent is as shown in Fig. 9.5.

1
I
Section 1 1 Section2
b=2cm 1
o) ¥ Mo, £ I ko %
1
1
7 =5700 N =12980 a=4cm x z=0 — 2z

FIGURE 9.4

Rectangular waveguide discontinuity.
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—{7— (b) The characteristic impedance of a quarter-wave section required to achieve a
match between line 1 and line 2 must be equal to V'n,47,,. Denoting the parame-
ters associated with the quarter-wave section by subscript 3, we then have

73

— = VN
V1= (Ay/A)

Me3 =

or

mVeye; _
V1 = (A/A) (#0fe3)
£o/€3 _ 570 % 129.8 _
1= (6/8)(eo/e3) (377)

v ’“gl Me2

0.5205

solving which we obtain g3 = 2.484g. To find the length of the quarter-wave sec-
tion, we compute

. A3 - A Vep/es
g3 , = 7
V1= (/A VT = (AfA) (eo/es)
> 0.63
o008 siem

VI — (9/16) X 04024

Thus, the length of the quarter-wave section is Ag3/4, or 1.0825 cm.
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR
cavity resonator

Let us now consider guided waves of equal amplitude propagating in the positive z and
negative zdirections in a rectangular waveguide.

This can be achieved by terminating the guide by a perfectly conducting sheet in a
constant z plane, that is, a transverse plane of the guide.

Due to perfect reflection from the sheet, the fields will then be characterized by standing
wave nature along the guide axis, that is, in the zdirection, in addition to the standing
wave nature in the x- and )~directions.

The standing wave pattern along the guide axis will have nulls of transverse electric field
on the terminating sheet and in planes parallel to it at distances of integer multiples of
A2
gl <.
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

cavity resonator

Such a structure is known as a cavity resonator and is the counterpart of the low-frequency
lumped parameter resonant circuit at microwave frequencies, since it supports oscillations at

frequencies for which the foregoing condition, that is,

A
d=I12% 1=123..
- Substituting for A, in (9.23) from Table 9.1 and rearranging, we

M___ > 0 —  1_1_ (Lf
L1 = (ya)? AN

which upon substitution for A, gives
e () ) )
2 \2a 2b 2d
)= 1
V(mf2a)t + (nf2b)? + (1/2d)*

17
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9.1 RECTANGULAR METALLIC WAVEGUIDE AND CAVITY RESONATOR

cavity resonator

The expression for the frequencies of oscillation is thus given by

) B G
BTN VaeV\2a 2b 2d

18
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
Loss in dielectric

Power dissipation in the imperfect dielectric of a guide results in loss that follows simply
from the attenuation constant for the case of a uniform plane wave propagating in the
dielectric.

We consider the TE or TM wave in a parallel-plate waveguide, then we know that progress
of the composite TE or TM wave along the guide by a distance d'involves travel of the
component uniform plane waves _obliquely to the plates by a distance d/\/1 — (fc/f)?

Thus, if «y is the atten-
uation constant for uniform plane wave propagation in the dielectric, then
the attenuation constant ay for the TE or TM wave along the guide axis is

ay/ V1 — (f,/f)? and the attenuation ™ is cqual to ¢¥ /¥ 1=/ From

Scction 4.5, we recall that for a slightly impertect diclectric (o/we < 1),
. 'ﬁ(l a? ) o [
alb = — = — o= —
g 2V e 8w’e” 2Ve
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
Basis for analysis of loss in conductors

The procedure is based on considering the situation as though a plane wave having the same
magnetic field components as those given by the appropriate tangential magnetic field components
on that wall for the perfect conductor case propagates normally into the conductor and

then computing the power flow into the wall (assumed to be of infinite depth in view of the rapid
attenuation of fields as they propagate into a good conductor).

Now, for a tangential magnetic field H, on a given wall, the electric-ficld vector
of a uniform plane wave propagating into the wall (designated to be in the di-
rection a,,) is 7. H, X a,. where 7, is the intrinsic impedance of the conductor.
The complex Poynling vector is

P=1iL x H =17(H x a,) x H,
ﬁc[an(ﬁr'ﬁr) - ﬁ:(anﬁ:)]

ﬁcﬁ: : ﬁ: a,

Il
o=

[y

ra| =
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
Basis for analysis of loss in conductors

The time-average power flowing into the conductor of conduclivity o for a
length Az along the guide is given by

AP = [(Rc P)-di Aza,
- Ry A R s
!

Az [ o
= H,-H; dl
2.;51 o

where 8(= 1/Vafueo) is the skin depth at the frequency of operation f, dl is the
differential length element along the transverse dimension, and f[ denotes in-
tegration performed along the transverse dimension. We shall illustrate the ap-
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

To obtain the attenuation constant «,., we note that since for a given mode the
fields are attenuated in the manner e “<* where the z-direction is assumed to be the guide
axis, the time-average power flow (Fr) down the guide varies in the manner e72< The

The time-average power dissipated over an infinitesimal distance Az at any value of zalong
the guide is then given by

a( P,

BN
az

= 2a.(Pr) Az

Al =~

L1 A
“TAR) Az

Prof. Tzong-Lin Wu / NTUEE 22
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

To find A(Fy)

TEi mode field c_omponents in a lossless waveguidé to be

E,-E-H-0
H = Acos % eTiPE

2

- A om o mx
E, =—j s mluEA sin—-e B2
_ E _ o
Hx -y _ 'ﬁA sin Ee—}h:z y=b H.
g Ag a -~
H, <~
H. P Ha
/ x=0
x=a b
y=0
H, *—//EZ z
a x
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

Each nonzero tangential component of magnetic field on a given wall will be accompanied by
a tangential electric field perpendicular to it so as to produce power flow into the conductor.

Since some of these tangential electric-field components are longitudinal, the mode is no
longer exactly TE mode.

However, these components are very small in magnitude; hence, the mode is almost a TE
mode.
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

RiGHT SIDE WALL (x = ()

H, = Aa,
-1 = AP
_ Az " ap
APy =55 [ _Japay
N
T 206 ° z
LEFT SIDE WALL (x = a)
Same as for the right side wall.
AP — ‘ﬁPbZaﬁ
() =%
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v=b
H, <~
H,
/
x=a b
y=0
H, "—//Ez

9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

BorroMm WaLL (y = 1)

— X TX
;= Al j—sin—a, + COSfaz)
Ag a
—_ _nf4a® ., wx TN
H, -H; Ag(?s1n2—+c052—
g

Az " -, 4a* . 5 TX 5 ’nTJ()
APy = Al —sin>— + cos®?— | d2
(Fa) 2:1'8[:0‘ | (,\é S s *

_ |APaz/40° N
© 4ob ,\% a

Top WaLL (y = b)

Same as for the bottom wall.

APAz (48
Alka = 48 ( A2 + a)
g
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H, <=
/HZ
x=a b
y=0 v
H, <~ H:
a X
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

Total dissipated power

|4F (4a®
AR) =g-s(“F+a+2)az
g

_\EP[W s
T 208| A2 T 4a?

4] [ 24°
(e

)+a+2b];\z
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

Now, to find the time-average power transmitted down the guide, we note that the
time-average Poynting vector is given by

= _anEyEy a
1 Ai 3 2772 <2 . 2 TX
- 2_%_1617“ — | AP sin - (9.57)
223
wiptat TA
e —| A sin22az
2n.m a

The time-average power transmitted down the guide is then given by

b ra
<P_f>:f f (P)-dxdya,
y=0Jx=0

PERX b ra
i . X

= 3 Azf f sin® —dx dy
g y=0Jx=0 a

Wl
=ZETD Ap

47]gv:r2
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

Finally, the attenuation constant is given by

Ez(ztz-’ ) dngr”
o’p2a’b| Al?

1 ( b:\‘) ne
=—|1+ N T ——————]
ed\ 20 N1 - (£/)

1 { 2b(1\)3] 1
=1+ =) [——
ad a\ A V1 — (fc/f)2

- e aﬁbr;\"ﬁb - %(%ﬂ
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

ex: Attenuation constant for mode in a rectangular guide with imperfect conductors

Note that for f— fo,a.— 00, For f < f. a. = 1/adby o VF, so that for f— 00,
ap—> 0, Thus, as f varies from f, to infinity, o, varies from infinity to some minimum
value and then increases to infinity. The minimum value of a, occurs for

For example. for b/a = 1/2, the minimum value occurs for f/f, = 2.4142.
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
Q factor of a resonator

The Qfactor, which is a measure of the frequency selectivity of the resonator, is defined as

energy stored in the resonator

Q=27

energy dissipated per cycle

energy stored in the resonator

time average power dissipated

The power dissipated in them can be computed by analysis, as in Example 9.6 for the
waveguide case.

As for the energy stored in the cavity, it is distributed between the electric and magnetic
fields at any arbitrary instant of time.

But there are particular values of time at which the electric field is maximum and the magnetic
field is zero, and vice versa. At these values of time, the entire energy is stored in one of the
two fields.
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; o ; mode in a rectangular cavity resonator

First, we obtain the expressions for TE; g1 mode field components by superimpos-
ing the (+) and (—) wave field components for the TE, o waves from Table 9.1 and sat-
isfying the boundary conditions of zero tangential electric fields at the ends z = 0 and
z = d. Thus, we have

E-E -8,-0

H, = cos % [Ae755 4+ A,elfe]

E =- 'A—;m z s'mﬂ[ﬁ eHE + ApelfR)
y }415'2 L a a 1 2

H. = L’\_E Esin mx [;ci e it _ 4 e}.’::z]
x IT?g o W a 1 2

[Ey]zﬂ) = [Ey]z.:d =0

A+ A, =0 or A=A
-_— sinf.d=0  or B = m/d
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; ;; mode in a rectangular cavity resonator

g -4 TX ., WL

. = Acos sin d

= —wua | Tx | Tg
E, = —jA— sin— sin

’ / a a d
_ —a . wx w3z
H, = —A—sin —cos —

* d a d

where A = —2jA; and we have also substituted A, = 2a and ay/n, = 27/A, = w/d.
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; o ; mode in a rectangular cavity resonator

Noting that the amplitude of the only electric field component Ey which is the value of Ey at
the instant of time the magnetic field throughout the cavity is zero, is given by

- opa | Tx ., mI
= |A| — sin — sin —
™ a

Integrating the energy density throughout the volume of the cavity,

a b d 1
Wawea = [ [ [ ZiEpan
=0 y=0Jz=0

R R
= —g|AP 'LLZ f f f sin? 7 sin? "X dx dy dz
2 7 Je=ody=0Jz=0 a d

w'p’e

= |4 2 a'bd
2
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; ;; mode in a rectangular cavity resonator

To find the time-average power dissipated in the walls of the cavity, we note from
the application of (9.51) that for a given wall, the time-average power dissipated is

(By) = f(Re?)'dSa"
5
_—
= fRe(—ncH,'H,)dS
s \2

1 [ —
= H,-H, ds
2031: co

HZ
yv=b_=
-
H, -
H,
H. * H
P cmd T
e x=10
H, <= /’f
z=0_-" x
LT H T B
- Y ¥
1// -

Prof. Tzong-Lin Wu / NTUEE
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS

ex: @ factor for TE; o ; mode in a rectangular cavity resonator
Ricur S WaLL (x = 0)

H,-H = |Afsin? 22
H = |A] sin 2
1o
Pyy= H,-H, dyd
(Fa) z,mfy:u MMy dy dz
|4[ b
T 4o
H
y=b = :
u
5 e
Lerr SinE WALL (x = a) - He H, L
- z=d -
Same as for right side wall. x=a P
Py = |4 b H, <= -
{ d) 4o = 9,/’ /fx
T e
L ’ ¥
-~ z
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; ;; mode in a rectangular cavity resonator

Borrom WaLr (y = 0)

H = :l[fgsm%xcos?ax + cos—sin—a ]
H,-H; = |4 2[(%)7 sin? X cos? T2 4 cos? IE in? _‘—Z]
1 a pd
{Pa) = 3 j H,-H, dxdz
28 Jy=0dz=0
AP fa?
- L ‘% (% - "d)
oré H,
y=b &
By
Tor WarL (y = b) Hx “~——
H H, "
Same as for bottom wall. LT 2=d _#T %
x=a
- =0
AP (a? *
=2 )
B8oal\ d H, <= e
z=0_-7 x
Ay Tl
Pl Tl
’,’ ¥
.
x
rof. Tzong-Lin Wu
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; o ; mode in a rectangular cavity resonator

FroNTtWalL (z = )
H = —E% sin ?ax
2
o - 1Ap(0) a2 ™
H;-H, = |A| (d) sin” —

Lo 3
(B} = 5— H,-H, dxdy
Zoo ity

_AEa
T 40 g2
H.
y=b_= :
BackWarL(z = d) -
H, ———
Same as for front wall.
L H: h:"= 4 o H:
A% “x=a - 0
A g =
(Pi) =7—=—% *
4d d- .
H,a < -~
7= u/,’ =
T e
- - ¥
’,/ -
x
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; ;; mode in a rectangular cavity resonator

Adding up the contributions from all six walls, we obtain the total time-average power
dissipated to be

AP Fad _a'b
(Pd>_u(bd+a+a +a)

" 206 27 27 42 (9:70)
23 2 #;
w peabd/8% y=b_x
Q=o 3 3 -
i(bd+a—+“d+“rb) H, il
— 208 24 2 & ol et
_ optes 2a°bd? Txea x=0
4x?  2bd® + a'd + ad® + 2a°b e e
o B
ST
// y=0 ¥y
X
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9.3 LOSSES IN METALLIC WAVEGUIDES AND RESONATORS
ex: @ factor for TE; o ; mode in a rectangular cavity resonator

From (9.25), the resonant frequency o for the TE, 5, mode is, however, given by

vl )+ @T o)

Thus, (9.71) reduces to

mard b(a® + d*)*?
= 3 ) 3 3 (9.73)
2 ad(a® +d) +2b(a’ + d°)
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