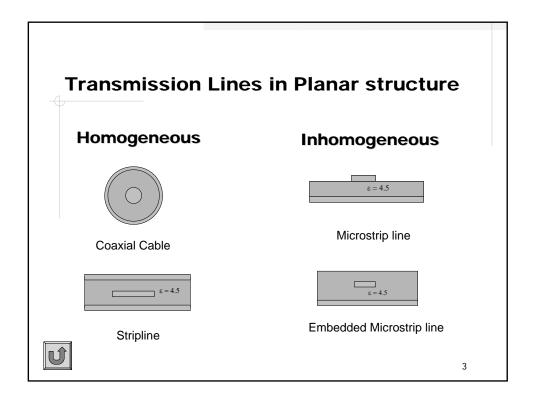
Transmission Line Basics

1

Outlines

- Transmission Lines in Planar structure.
- **♦** Key Parameters for Transmission Lines.
- **♦** Transmission Line Equations.
- ♦ Analysis Approach for Z₀ and T_d
- ♠ Intuitive concept to determine Z₀ and T_d
- Loss of Transmission Lines
- Example: Rambus and RIMM Module design

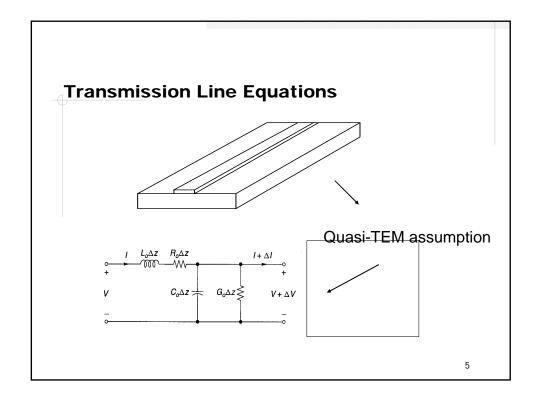


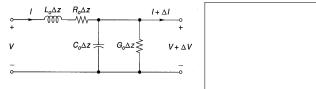
Key Parameters for Transmission Lines

- 1. Relation of V/I: Characteristic Impedance Z_0
- 2. Velocity of Signal: Effective dielectric constant $\, \epsilon_{e} \,$
- 3. Attenuation: Conductor loss α_{c} Dielectric loss α_{d}

Lossless case

Z_0	$\sqrt{\frac{L}{C}}$	$\frac{1}{V_pC}$	$\frac{T_d}{C}$
V_p	$\frac{1}{\sqrt{LC}}$	$\frac{c_0}{\sqrt{\varepsilon_e}}$	$\frac{1}{T_d}$





 R_0 = resistance per unit length(Ohm / cm)

 G_0 = conductance per unit length (mOhm/cm)

 L_0 = inductance per unit length (H / cm)

 C_0 = capacitance per unit length (F/cm)

KCI:
$$\frac{dI}{dt} = -(G_0 + iwG_0)V$$
 V and I

Transmission Line Equations

Two wave components with amplitudes V+ and V- traveling in the direction of +z and -z

$$V = V_{+}e^{-rz} + V_{-}e^{+rz}$$

$$I = \frac{1}{Z_{0}}(V_{+}e^{-rz} - V_{-}e^{+rz}) = I_{+} + I_{-}$$

Where propagation constant and characteristic impedance are

$$r = \sqrt{(R_0 + jwL_0)(G_0 + jwC_0)} = \alpha + j\beta$$

$$Z_0 = \frac{V_+}{I_+} = \frac{V_-}{I_-} = \sqrt{\frac{R_0 + jwL_0}{G_0 + jwC_0}}$$

7

Transmission Line Equations

 α and β can be expressed in terms of (R_0, L_0, G_0, C_0)

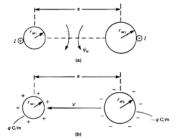
$$\alpha^2 - \beta^2 = R_0 G_0 - \omega^2 L_0 C_0$$
$$2\alpha\beta = \omega (R_0 C_0 + G_0 L_0)$$

The actual voltage and current on transmission line:

$$V(z,t) = \text{Re}[(V_{+}e^{-\alpha z}e^{-j\beta z} + V_{-}e^{+\alpha z}e^{j\beta z})e^{jwt}]$$

$$I(z,t) = \text{Re}[\frac{1}{Z_{0}}(V_{+}e^{-\alpha z}e^{-j\beta z} - V_{-}e^{+\alpha z}e^{j\beta z})e^{jwt}]$$

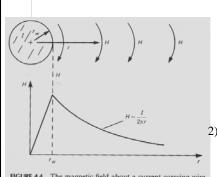
Analysis approach for Z_0 and T_d (Wires in air)



$$C = ? (by Q=C V)$$

$$L = ?$$
 (by $\Psi = L I$)

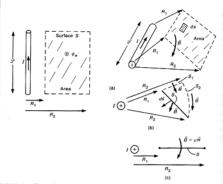
Analysis approach for $\rm Z_0$ and $\rm T_d$ (Wires in air): $\rm ^{Ampere's\ Law\ for\ H\ field}$



$$H(r) = \frac{I}{\oint_{c} d\ell} = \frac{I}{2\pi r}$$

2)
$$\psi_e = \int_S \overline{B_r} \cdot d\bar{s} = \int_{r=R_1}^{R_2} \frac{\mu_0 I}{2\pi r} dr = \frac{\mu_0 I}{2\pi} \ln(\frac{R_1}{R_2})$$
 (in Wb)

Analysis approach for Z_0 and T_d (Wires in air): Ampere's Law for H field

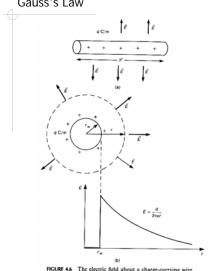


$$\psi_e = \frac{\mu_0 I}{2\pi} \ln(\frac{R_2}{R_1})$$

$$L = \psi_e / I$$

11

The per-unit-length Parameters (E): Gauss's Law



1) from gauss law

$$\nabla \cdot \overrightarrow{D} = \rho \Leftrightarrow \oint_{S} \varepsilon \overrightarrow{E_{T}} \cdot d\overrightarrow{s} = Q_{total}$$
$$\cdot F = Q \times 1m$$

$$\mathcal{E}_0 \bigoplus_{S} ds$$

$$=\frac{q}{2\pi\varepsilon_0 r}$$

2)
$$V = \int_{C} \overline{E_{T}} \cdot d\vec{\ell} = -\int_{r=R_{2}}^{R_{1}} \frac{q}{2\pi\varepsilon_{0}r} dr$$

$$= \frac{q}{2\pi\varepsilon_0} \ln \frac{R_2}{R_1}$$

The per-unit-length Parameters (E)

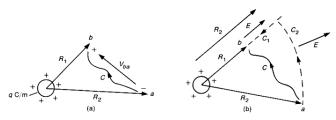


FIGURE 4.7 Illustration of a basic subproblem of determining the voltage between two points: (a) dimensions of the problem; (b) an equivalent but simpler problem.

$$V = \frac{q}{2\pi\varepsilon_0} \ln(\frac{R_2}{R_1})$$
$$C = Q/V$$

13

c. For example Determine the L.C.G.R of the two-wire line.

(note : homogeneous medium)

Inductance:

$$L = \ell_e = \frac{\psi_e}{I}$$

where
$$\psi_{e} = \frac{\mu_{0}I}{2\pi} \ln(\frac{s-r_{w2}}{r_{w1}}) + \frac{\mu_{0}I}{2\pi} \ln(\frac{s-r_{w1}}{r_{w2}})$$

$$= \frac{\mu_{0}I}{2\pi} \ln(\frac{(s-r_{w2})(s-r_{w1})}{r_{w1}r_{w2}})$$

$$(\mu_{0}, \varepsilon_{0})$$

$$\Rightarrow L = \frac{\mu_0}{2\pi} \ln(\frac{s^2}{r_{w1}r_{w2}})$$

assume $s \gg r_{w1}$, r_{w2}

Capacitance:

1)
$$\ell_e \cdot c = \mu_0 \varepsilon_0$$

$$\Rightarrow C = \frac{2\pi\varepsilon_0}{\ln\left(\frac{s^2}{r_{w_1}r_{w_2}}\right)}$$

$$\Rightarrow \frac{1}{r_{w_1}r_{w_2}}$$

2)
$$V = \frac{q}{2\pi\varepsilon_0} \ln(\frac{s \cdot r_{w2}}{r_{w1}}) + \frac{q}{2\pi\varepsilon_0} \ln(\frac{s \cdot r_{w1}}{r_{w2}})$$

$$= \frac{q}{2\pi\varepsilon_0} \ln(\frac{(s \cdot r_{w2})(s \cdot r_{w1})}{r_{w1}r_{w2}})$$

$$\cong \frac{q}{2\pi\varepsilon_0} \ln(\frac{s^2}{r_{w1}r_{w2}}) \quad \text{if } s \gg r_{w1}, r_{w2}$$

$$C = \frac{q}{V} = \frac{2\pi\varepsilon_0}{\ln(\frac{s^2}{r_{w1}r_{w2}})} \quad \leftarrow \text{ the same with 1) approach}$$

15

The per-unit-length Parameters

Homogeneous structure

TEM wave structure is like the DC (static) field structure

$$LG = \mu \sigma$$

$$LC = \mu \varepsilon$$

So, if you can derive how to get the L, G and C can be obtained by the above two relations.

The per-unit-length Parameters (Above GND)

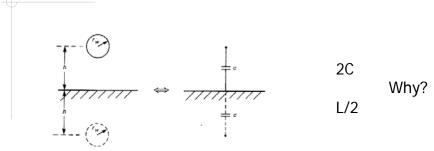
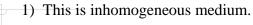


FIGURE 4.9 Determination of the per-unit-length capacitance of a wire above a ground plane with the method of images.

17

d. How to determine L,C for microstrip-line.

$$\left\langle \begin{array}{c} \mu_0, \mathcal{E}_0 \\ \mu_1, \mathcal{E}_1 \end{array} \right
angle$$



- 2) Nunerical method should be used to solve the C of this structure, such as Finite element, Finite Difference...
- 3) But ℓ_e can be obtained by

$$\ell_e C_0 = \mu_0 \varepsilon_0 \quad \Rightarrow \quad \ell_e = \frac{\mu_0 \varepsilon_0}{C_0}$$

where C_0 is the capacitance when ε_1 medium is replaced by ε_0 medium.

Analysis approach for Z₀ and T_d (Strip line)

Approximate electrostatic solution

The fields in TEM mode must satisfy Laplace equation 2.

$$\nabla_{t}^{2}\Phi(x,y)=0$$

1.

where Φ is the electric potential

The boundary conditions are

$$\Phi(x, y) = 0$$
 at $x = \pm a / 2$

$$\Phi(x,y) = 0 \text{ at } y = 0,b$$

19

Analysis approach for Z₀ and T_d

3. Since the center conductor will contain the surface charge, so

3. Since the center conductor will contain the surface charge,
$$\Phi(x,y) = \begin{cases} \sum_{\substack{n=1\\odd}}^{\infty} A_n \cos \frac{n\pi x}{a} \sinh \frac{n\pi y}{a} & \text{for } 0 \le y \le b/2\\ \sum_{\substack{n=1\\odd}}^{\infty} B_n \cos \frac{n\pi x}{a} \sinh \frac{n\pi}{a} (b-y) & \text{for } b/2 \le y \le b \end{cases}$$

$$Why?$$

4. The unknowns A_n and B_n can be solved by two known conditions:

The potential at y = b/2 must continuous

The surface charge distribution for the strip: $\rho_s = \begin{cases} 1 & \text{for } |x| \le W/2 \\ 0 & \text{for } |x| \ge W/2 \end{cases}$

Analysis approach for Z_0 and T_d

5.
$$\begin{cases} V = -\int_{0}^{b/2} E_y(x=0,y) dy = -\int_{0}^{b/2} -\partial \Phi(x,y) / \partial y(x=0,y) dy \\ Q = \int_{-w/2}^{0} \rho_s(x) dx = W(C/m) \end{cases}$$

6.
$$C = \frac{Q}{V} = \frac{W}{\sum_{\substack{n=1\\odd}}^{\infty} \frac{2a\sin(n\pi W/2a)\sinh(n\pi b/2a)}{(n\pi)^2 \varepsilon_0 \varepsilon_r \cosh(n\pi b/2a)}}$$

$$Z_0 = \frac{1}{v_p C} = \frac{\sqrt{\varepsilon_r}}{cC}$$

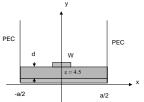
Answers!!

7.
$$T_d = \sqrt{\varepsilon_r} / c$$

21

Analysis approach for \boldsymbol{Z}_0 and \boldsymbol{T}_d (Microstrip Line)

1.



2. The fields in Quasi - TEM mode must satisfy Laplace equation

$$\nabla_t^2 \Phi(x, y) = 0$$

where Φ is the electric potential

The boundary conditions are

$$\Phi(x, y) = 0$$
 at $x = \pm a / 2$

$$\Phi(x, y) = 0$$
 at $y = 0, \infty$

Analysis approach for Z₀ and T_d (Microstrip Line)

$$\Phi(x,y) = \begin{cases} \sum_{\substack{n=1\\ odd}}^{\infty} A_n \cos \frac{n\pi x}{a} \sinh \frac{n\pi y}{a} & \text{for } 0 \le y \le d\\ \sum_{\substack{n=1\\ odd}}^{\infty} B_n \cos \frac{n\pi x}{a} e^{-n\pi y/a} & \text{for } d \le y \le \infty \end{cases}$$

4. The unknowns A_n and B_n can be solved by two known conditions and the orthogonality of cos function:

The potential at y = d must continuous The surface charge distribution for the strip: $\rho_s = \begin{cases} 1 & \text{for } |x| \le W/2 \\ 0 & \text{for } |x| \ge W/2 \end{cases}$

23

Analysis approach for Z₀ and T_d (Microstrip Line)

5.
$$\begin{cases} V = -\int_{0}^{b/2} E_{y}(x=0,y) dy = -\int_{0}^{b/2} -\partial \Phi(x,y) / \partial y(x=0,y) dy = \sum_{n=1}^{\infty} A_{n} \sinh \frac{n\pi d}{a} \\ Q = \int_{-w/2}^{w/2} \rho_{s}(x) dx = W(C/m) \end{cases}$$
6.
$$C = \frac{Q}{V} = \frac{W}{\sum_{\substack{n=1 \ odd}}^{\infty} \frac{4a \sin(n\pi W/2a) \sinh(n\pi d/2a)}{(n\pi)^{2} W \varepsilon_{0} [\sinh(n\pi d/a) + \varepsilon_{r} \cosh(n\pi d/a)]}$$

Analysis approach for Z_0 and T_d (Microstrip Line)

To find the effective dielectric constant $\varepsilon_{\rm e}$, we consider two cases of capacitance

- 1. C = capacitance per unit length of the microstrip line with the dielectric substrate $\varepsilon_r \neq 1$
- 2. C_0 = capacitance per unit length of the microstrip line with the dielectric substrate $\varepsilon_r = 1$

$$\therefore \varepsilon_e = \frac{C}{C_0}$$

8.

$$Z_0 = \frac{1}{v_p C} = \frac{\sqrt{\varepsilon_e}}{cC}$$

$$T_d = \sqrt{\varepsilon_e} / c$$

25

Tables for Z_0 and T_d (Microstrip Line)

Fr4: dielectric constant = 4.5

Frequency: 1GHz

Tables for Z₀ and T_d (Strip Line)

Fr4: dielectric constant = 4.5

Frequency: 1GHz

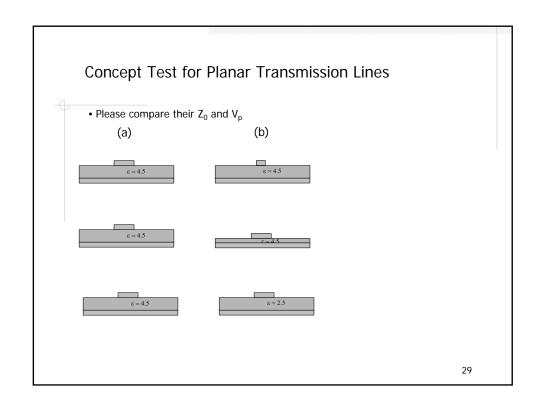
27

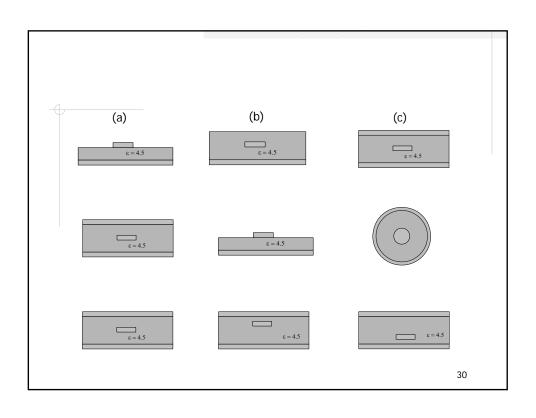
Analysis approach for Z_0 and T_d (EDA/Simulation Tool)

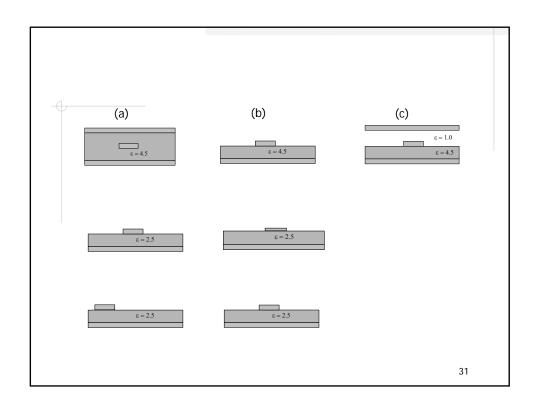
- 1. HP Touch Stone (HP ADS)
- 2. Microwave Office
- 3. Software shop on Web:
- 4. APPCAD

 $(\underline{http://softwareshop.edtn.com/netsim/si/termination/term_article.html})$

 $(\underline{\text{http://www.agilent.com/view/rf}} \ \ \text{or} \ \ \underline{\text{http://www.hp.woodshot.com}} \)$







Loss of Transmission Lines

Typically, dielectric loss is quite small -> $G_0 = 0$. Thus

$$Z_0 = \sqrt{\frac{R_0 + jwL_0}{jwC_0}} = \sqrt{\frac{L_0}{C_0}} (1 - jx)^{1/2}$$

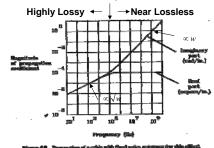
$$r = \sqrt{(R_0 + jwL_0)(jwC_0)} = \alpha + j\beta$$

$$w = \frac{R_0}{L_0}$$

Where $x = \frac{R_0}{wL_0}$

• Lossless case : x = 0Near Lossless: x << 1

Highly Lossy: x >> 1



33

Loss of Transmission Lines

•For Lossless case: • For Near Lossless case:

$$\alpha = 0$$

$$\beta = \omega \sqrt{L_0 C_0}$$

$$\alpha \approx \frac{R_0}{2\sqrt{L_0 / C_0}}$$

$$Z_0 = \sqrt{\frac{L_0}{C_0}}$$

$$\beta \approx \omega \sqrt{L_0 C_0} \left[1 - \frac{x^2}{8} \right]$$

Time delay
$$T_0 = \sqrt{L_0 C_0}$$

$$\begin{split} \alpha &= 0 \\ \beta &= \omega \sqrt{L_0 C_0} \\ Z_0 &= \sqrt{\frac{L_0}{C_0}} \\ \text{Time delay } T_0 &= \sqrt{L_0 C_0} \\ \end{split} \qquad \qquad \begin{aligned} \alpha &\approx \frac{R_0}{2 \sqrt{L_0 / C_0}} \\ \beta &\approx \omega \sqrt{L_0 C_0} \left[1 - \frac{x^2}{8} \right] \\ Z_0 &\cong \sqrt{\frac{L_0}{C_0}} \left(1 - j \frac{R_0}{2wL_0} \right) = \sqrt{\frac{L_0}{C_0}} + \frac{1}{jwC} \text{ where } C = 2T_0 / R_0 \end{aligned}$$

Time delay
$$T_0 = \sqrt{L_0 C_0}$$

Loss of Transmission Lines

That's why telephone company terminate

the lines with 600 ohm

• For highly loss case: (RC transmission line)

$$\alpha \approx \sqrt{\frac{wR_0C_0}{2}} \underbrace{[1-\frac{1}{2x}]}_{\mbox{Nonlinear phase relationship with f}}_{\mbox{Nonlinear phase relationship with f}}_{\mbox{Nonlinear phase relationship with f}}$$

$$\beta \approx \sqrt{\frac{wR_0C_0}{2}} \underbrace{[1+\frac{1}{2x}]}_{\mbox{Nonlinear phase relationship with f}}_{\mbox{Nonlinear phase relationship with f}}_{\mbox{Nonlinear phase relationship with f}}$$

$$\mbox{Example of RC transmission line:}$$

$$\mbox{AWG 24 telephone line in home}$$

$$\mbox{$Z_0(w) = \left(\frac{R+iwL}{iwC}\right)^{1/2} = 648(1+j)$}$$

where

 $R = 0.0042\Omega / in$

L = 10nH/in

C = 1pF / in

w = 10,000 rad / s(1600 Hz): voice band

35

Loss of Transmission Lines (Dielectric Loss)

TABLE 5.3 SOME TYPICAL LINE PARAMETERS

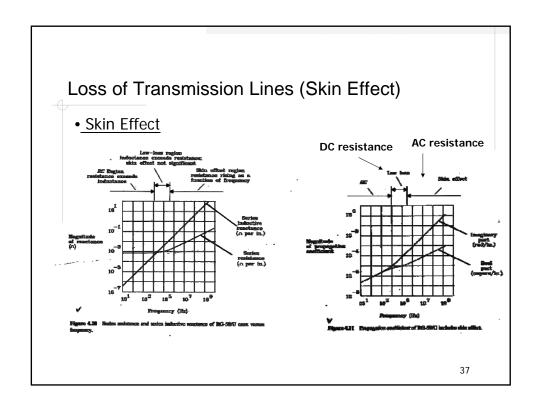
Case	L, (ulikus)	C _p (pFAm)	it, (Ωfant)			€ _y	R _o /toL _o ⁴
PCB	5	1	0.050b	70.7	70.7	4.5	0:0023
MCM	5	1	5	70.7	70.7	45	9.23
Chip	2.2	2	500	32.9	65.8	3.9	52.5

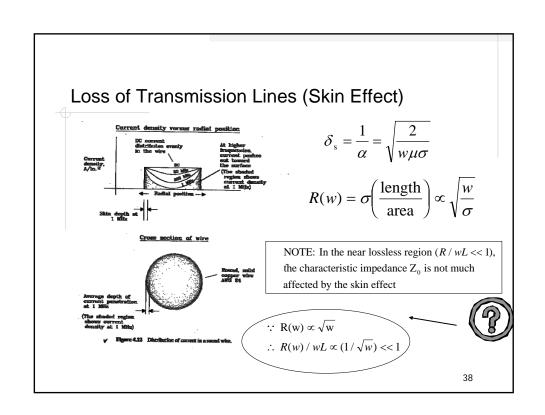
 $^{6}w = 2\pi f = 2\pi (0.35)/T_{V} = 4.4 \times 10^{9}$ radius, at $T_{V} = 0.5$ ns. $^{6}4$ -mil width, 1-az Cu.

The loss of dielectric loss is described by the loss tangent

$$\tan \delta_D = \frac{G}{wC}$$
 FR4 PCB $\tan \delta_D = 0.035$

$$\therefore \alpha_D = \frac{GZ_0}{2} = (wC \tan \delta_D Z_0) / 2 = \pi f \tan \delta_D \sqrt{LC}$$





Loss of Transmission Lines (S	kin Effect)
-------------------------------	-------------

f (MHz)	100	200	400	800	1200	1600	2000
$\delta_{\rm s} = \sqrt{\frac{1}{f\mu\sigma}}$	6.6um	4.7um	3.3um	2.4um	1.9um	1.7um	1.5um
$R_s(\Omega)$	2.6m	3.7m	5.2m	7.4m	9.0m	10.8m	11.6m
8 < /	ohm						
Trace resistance	1.56	2.22	3.12	4.44	5.4	6.48	7.0
resistance	ohm						

Skin depth resistance
$$R_s = \sqrt{\frac{\pi \mu f}{\sigma}}(\Omega)$$

6mil

$$\mu = 4\pi \times 10^{-7} \, H \, / \, m$$
 $\sigma(\text{Cu}) = 5.8 \times 10^7 \, S \, / \, m$

Length of trace =
$$20$$
cm

39

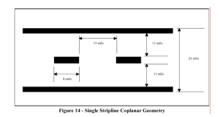
Loss Example: Gigabit differential transmission lines

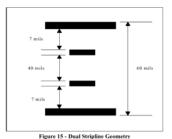
For comparison: (Set Conditions)

- Differential impedance = 100
- Trace width fixed to 8mil 2.
- Coupling coefficient = 5% 3.
- Metal: 1 oz Copper

Question:

- Which one has larger loss by skin effect? Which one has larger loss of dielectric?





Loss Example: Gigabit differential transmission lines

Skin effect loss

Frequency	Stripline Resistance Ω / feet	Dual Stripline Resistance Ω / feet	Percent Difference
500 MHz	6,144	6.648	8,2%
1,5 GHz	10.668	11,508	7.9%
2,5 GHz	13.728	14,832	8.0%

Table 3 - Simulated Results of Skin Effect Losses



Look at the field distribution of the common-mode coupling Look at the field distribution of the common-mode coupling Figure 11 - Coplanar Differential Single Stripline Routing Geometry Figure 12 - Differential Routing in a Dual Stripline Geometry

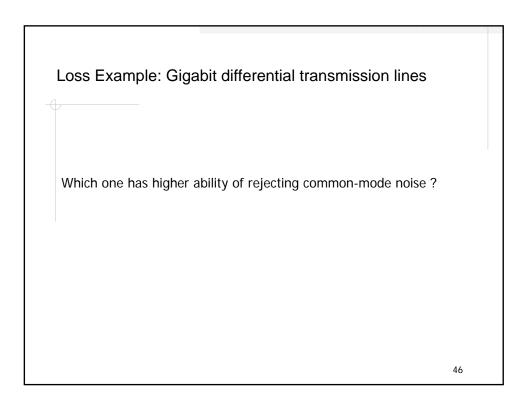
Loss Example: Gigabit differential transmission lines

Coplanar structure has more surface for current flowing

How about the dielectric loss? Which one is larger?

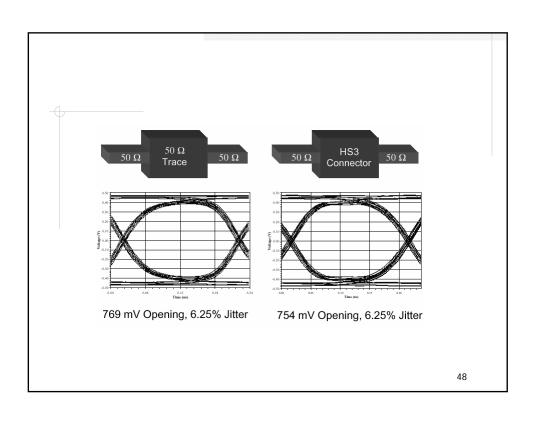
44

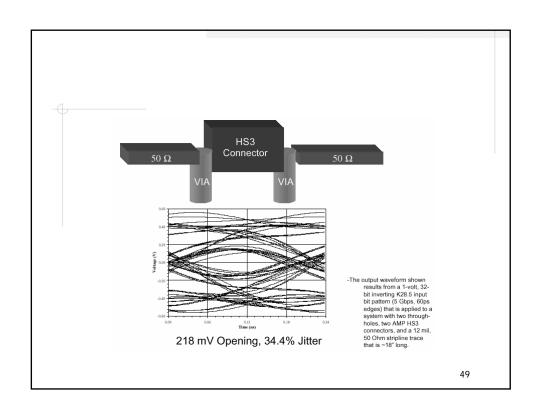
Loss Example: Gigabit differential transmission lines The answer is dual stripline has larger loss. Why? The field density in the dielectric between the trace and GND is higher for dual stripline.

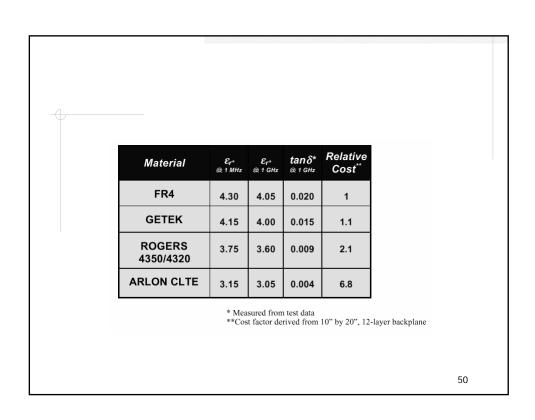


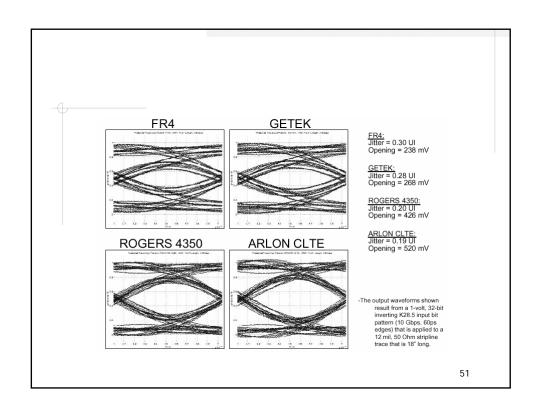
Loss Example: Gigabit differential transmission lines

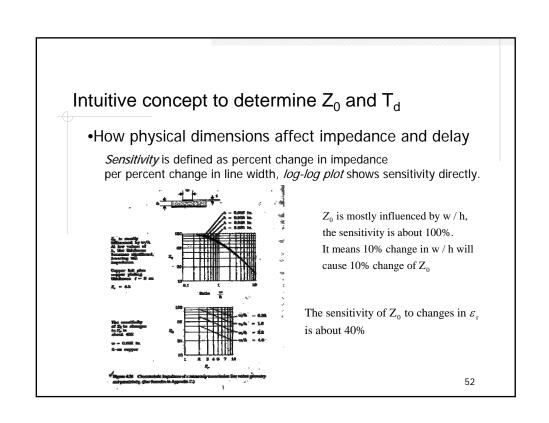
The answer is coplanar stripline. Why?

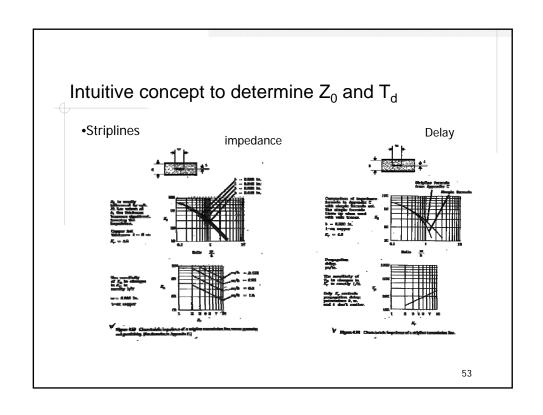


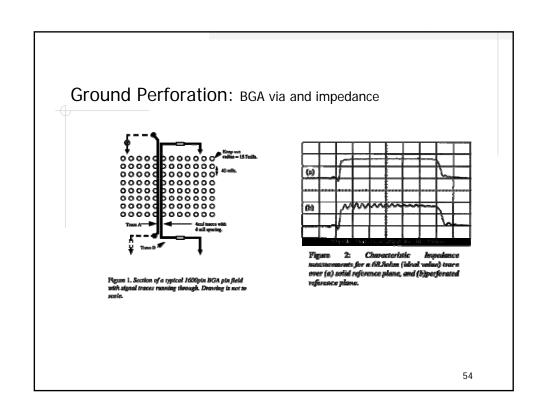


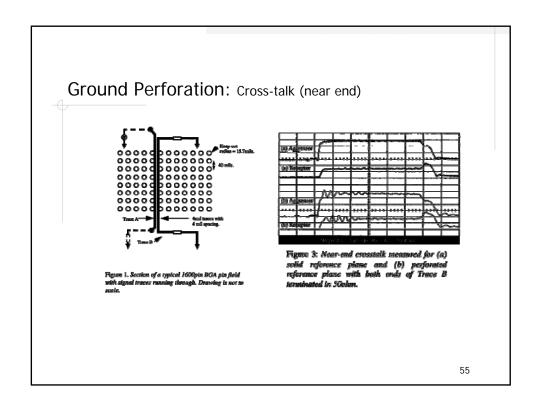


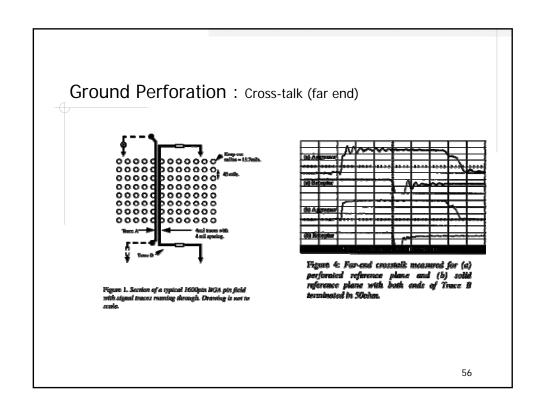












Example(II): Transmission line on non-ideal GND

Reasons for splits or slits on GND planes

• DC isolation between different supply voltages.

• AC isolation of digital from low noise analog circuits.

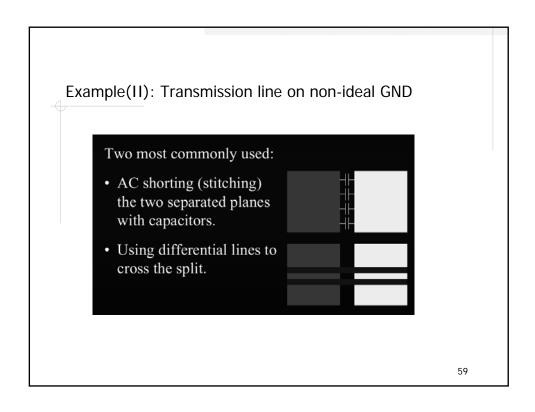
• Low cost method of removing unwanted resonances from the power distribution system.

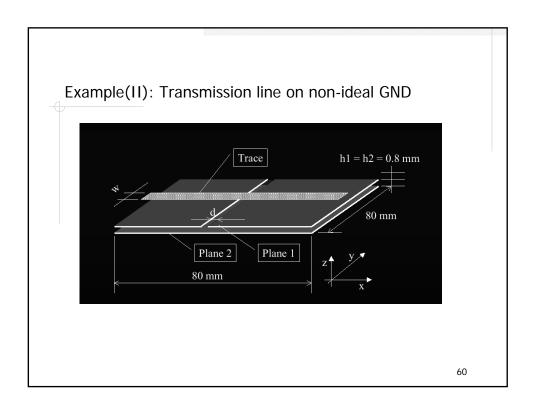
• Nearby touching via holes.

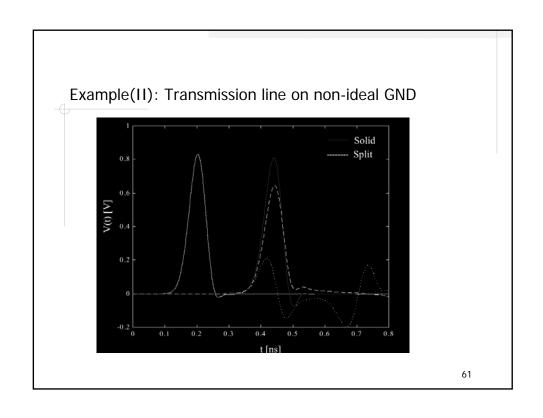
Example(II): Transmission line on non-ideal GND

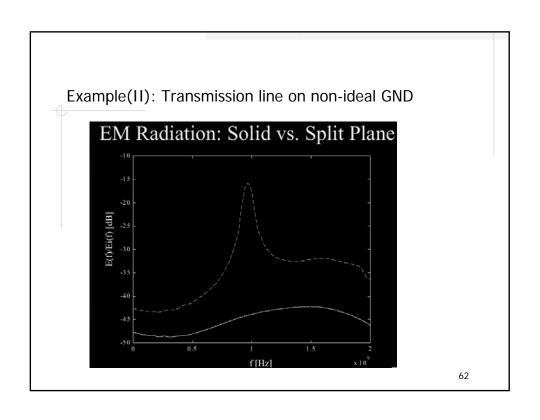
Disadvantages of Image Plane Slits and Splits

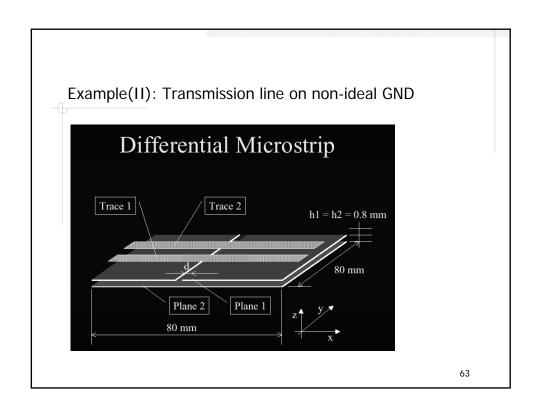
- Transverse slits in the image planes present a discontinuity to the flow of AC currents.
- · Result in significant signal degradation.
- Help generate common mode currents that result in significant radiation.

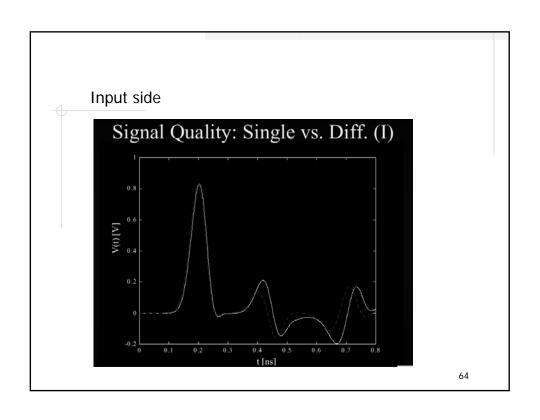


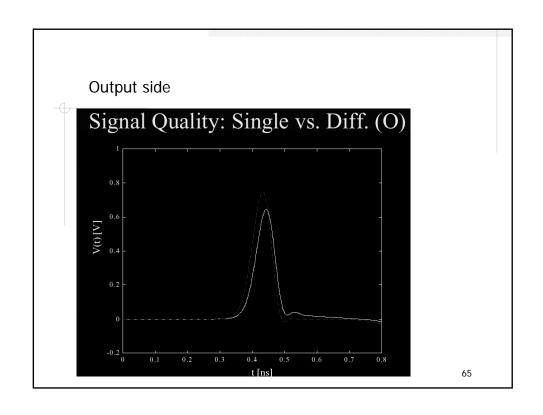


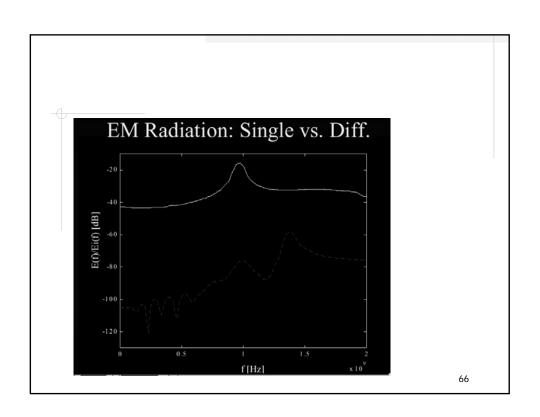


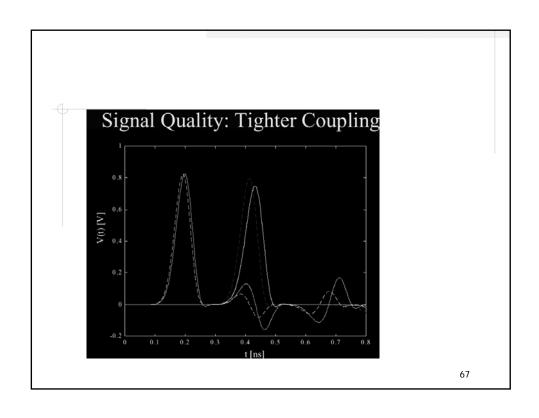


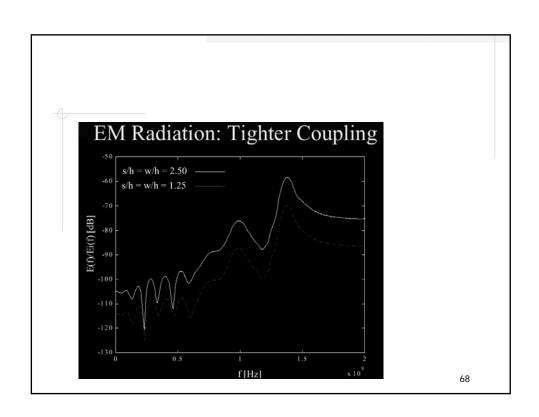


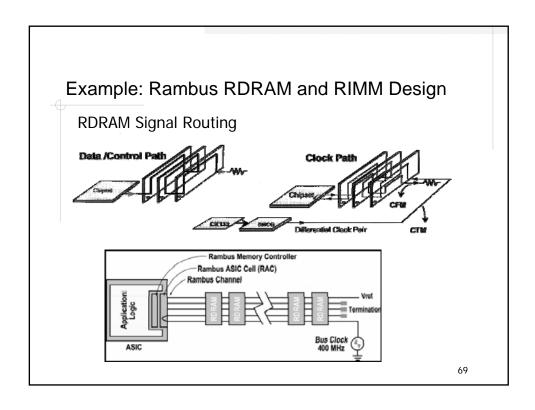












•Power:

VDD = 2.5V, Vterm = 1.8V, Vref = 1.4V

•Signal:

0.8V Swing: Logic 0 -> 1.8V, Logic 1 -> 1.0V

2x400MHz CLK: 1.25ns timing window, 200ps rise/fall time

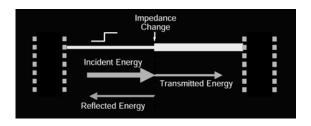
Timing Skew: only allow 150ps - 200ps

•Rambus channel architecture:

(30 controlled impedance and matched transmission lines)

- ■Two 9-bit data buses (DQA and DQB)
- ■A 3-bit ROW bus
- ■A 5-bit COL bus
- ■CTM and CFM differential clock buses

- **RDRAM Channel is designed for 28** Ω +/- 10%
- Impedance mismatch causes signal reflections
- Reflections reduce voltage and timing margins
- **PCB** process variation -> Z₀ variation -> Channel error

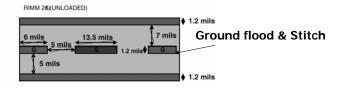


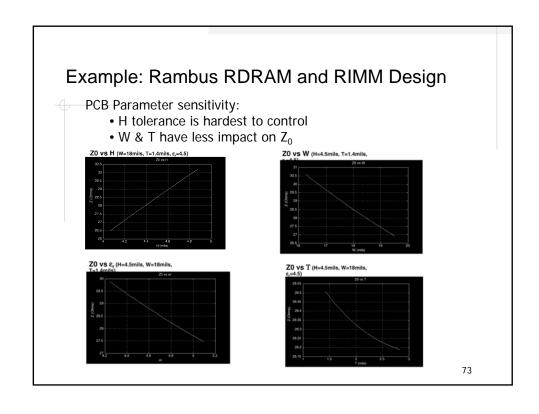
71

Example: Rambus RDRAM and RIMM Design

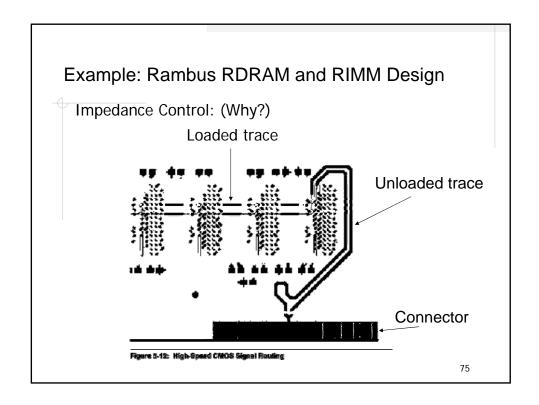
• Intel suggested coplanar structure

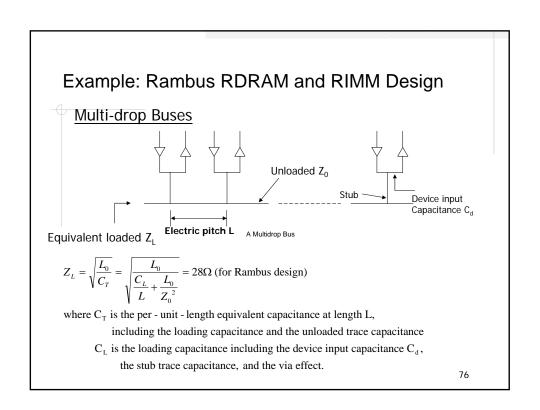
• Intel suggested strip structure











In typical RIMM module design

$$\begin{tabular}{ll} \begin{tabular}{ll} \beg$$

If you design unloaded trace $Z_0 = 56\Omega$

the electric pitch L = 7.06mm to reach loaded $Z_L = 28\Omega$

:
$$L_0 = Z_0 \tau = 56\Omega \times 6.77 \text{ psec / mm} = 379 \text{ pH / mm} = 9.5 \text{ pH / mil}$$

$$C_T = \frac{C_L}{L} + \frac{L_0}{Z_0^2} = \frac{2.5pF}{7.06mm} + \frac{379 \text{ pH / mm}}{56\Omega^2} = 0.475 \text{ pF / mm}$$

 $\therefore Z_L = \sqrt{\frac{L_0}{C_T}} = 28.3\Omega$

77

Example: Rambus RDRAM and RIMM Design

Dovice pitch

Dog bone
Petsern

Brocket Id trace length

Brocket I pitch

Ar B

Figure 5-5: 8 Device Single-Sided Edge-Bonded Module Device and Electrical Pitch

Modulation trace

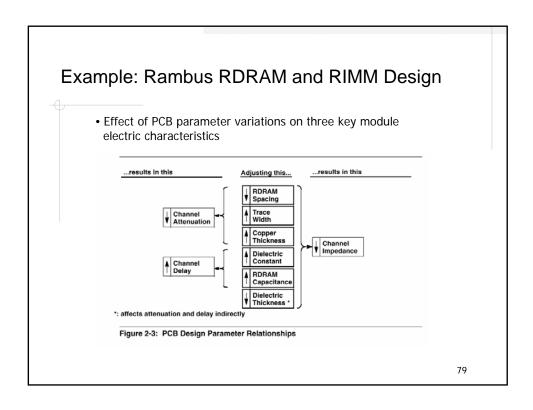
Device pitch = Device height + Device space

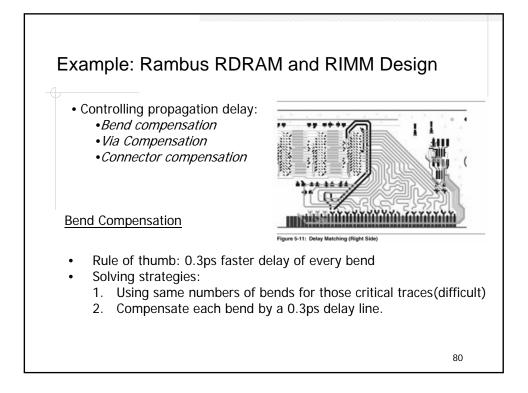
Electrical pitch L is designed as

$$L = \frac{C_L Z_L^2}{\frac{\tau}{Z_0} (Z_0^2 - Z_L^2)}$$

If device pitch > electric pitch, modulation trace of 28ohm should be used.

Modulation trace length = Device pitch - Electric pitch





Via Compensation (delay)

For a 8 layers PCB, a via with 50mil length can be modeled as (L, C) = (0.485 nH, 0.385 pF).

∴ Delay
$$T_0 = \sqrt{LC} = 13.7 \text{ psec}$$

Impedance $Z_0 = \frac{1}{\sqrt{LC}} \approx 38\Omega$ ← Inductive

Rule of thumb: delay of a specific via depth can be calculated by scaling the inductance value which is proportional to via length.

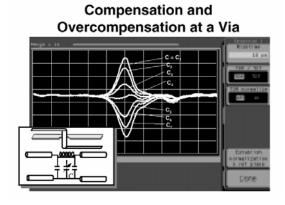
∴ 30mil via has delay ≈
$$13.7 \times \sqrt{\frac{30\text{mil}}{50\text{mil}}} = 10.6p \text{ sec}$$

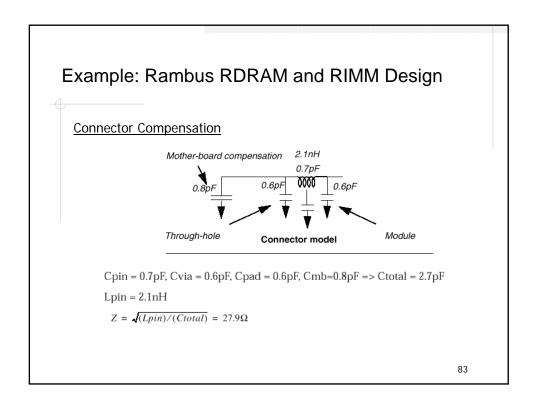
This delay difference can be compensated by adding a 1.566mm to the unloaded trace (56 Ω)

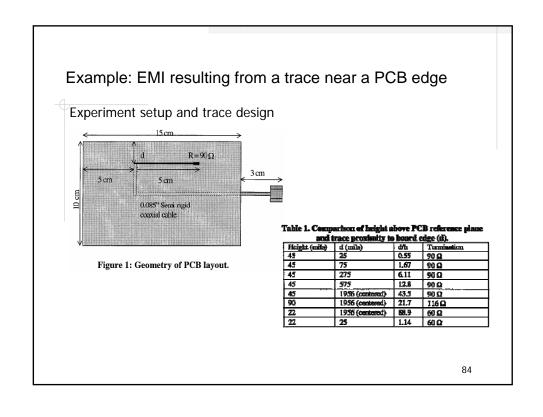
81

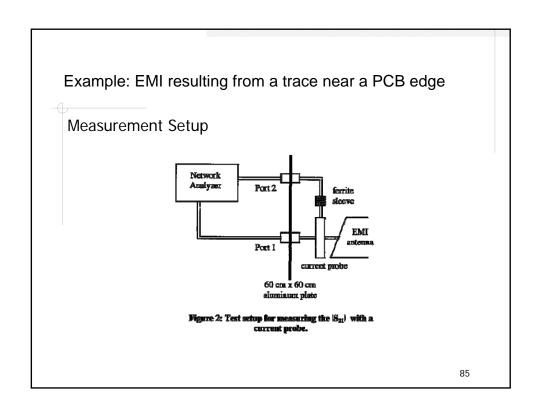
Example: Rambus RDRAM and RIMM Design

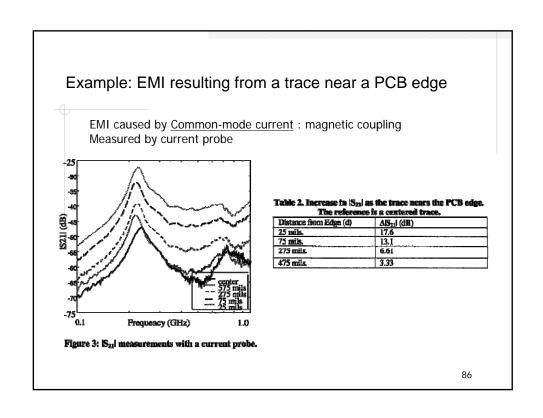
Via Compensation (impedance)

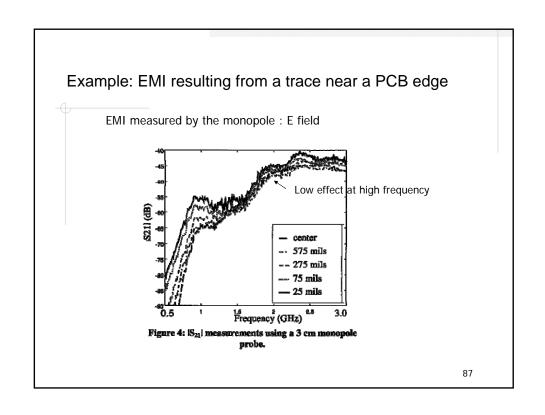


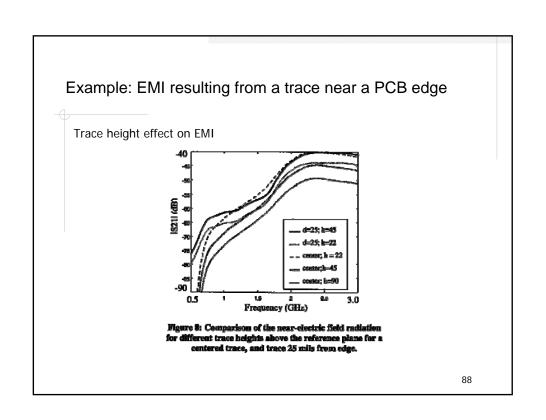












Reference

- 1. Howard W. Johnson, "High-speed digital design", Prentice-Hall, 1993
- Ron K. Poon, "Computer Circuits Electrical Design", Prentice-Hall, 1995
- David M. Pozar, "Microwave Engineering", John Wiley & Sons, 1998 William J. Dally, "Digital System Engineering", Cambridge, 1998 Rambus, "Direct Rambus RIMM Module Design Guide, V. 0.9", 1999